Influencing Bandits

D Manjunath

CMInDS and EE IIT Bombay

February 27, 2024

DM

イロト イポト イヨト イヨト

• Consider an ad placement system (APS) that has to display *k* out of *m* possible ads.

- Value of an ad to the APS is the click-through proabability for the ad.
- Further different ads could provide different revenues with a click-through.
- There is an incentive to place items with low click-through probabilities.
- Not unreasonable that the click-through probability depends on the history of ads seen before

• Some are annoyed by repetition; for others disinterest can turn to curiosity.

• If the APS is learning the interests of the user, and hence the value of each ad, the learning algorithm will explore

• How will exploration shape the preferences of the population?

- General interest: Capture the effect of the history of ads placed on the preferences? Remarks on this later
- For now, assume an extreme case of the system wanting to **shape the population** preferences through the ads placed or, in the case of a recommendation system, the items that it recommends—Opinion shaping or opinion control.

DM

- Consider an ad placement system (APS) that has to display *k* out of *m* possible ads.
 - Value of an ad to the APS is the click-through proabability for the ad.
 - Further different ads could provide different revenues with a click-through.
 - There is an incentive to place items with low click-through probabilities.
- Not unreasonable that the click-through probability depends on the history of ads seen before

• Some are annoyed by repetition; for others disinterest can turn to curiosity.

• If the APS is learning the interests of the user, and hence the value of each ad, the learning algorithm will explore

• How will exploration shape the preferences of the population?

- General interest: Capture the effect of the history of ads placed on the preferences? Remarks on this later
- For now, assume an extreme case of the system wanting to **shape the population** preferences through the ads placed or, in the case of a recommendation system, the items that it recommends—Opinion shaping or opinion control.

DM

- Consider an ad placement system (APS) that has to display *k* out of *m* possible ads.
 - Value of an ad to the APS is the click-through proabability for the ad.
 - Further different ads could provide different revenues with a click-through.
 - There is an incentive to place items with low click-through probabilities.
- Not unreasonable that the click-through probability depends on the history of ads seen before

• Some are annoyed by repetition; for others disinterest can turn to curiosity.

• If the APS is learning the interests of the user, and hence the value of each ad, the learning algorithm will explore

• How will exploration shape the preferences of the population?

- General interest: Capture the effect of the history of ads placed on the preferences? Remarks on this later
- For now, assume an extreme case of the system wanting to **shape the population** preferences through the ads placed or, in the case of a recommendation system, the items that it recommends—Opinion shaping or opinion control.

DM

- Consider an ad placement system (APS) that has to display *k* out of *m* possible ads.
 - Value of an ad to the APS is the click-through proabability for the ad.
 - Further different ads could provide different revenues with a click-through.
 - There is an incentive to place items with low click-through probabilities.
- Not unreasonable that the click-through probability depends on the history of ads seen before

• Some are annoyed by repetition; for others disinterest can turn to curiosity.

• If the APS is learning the interests of the user, and hence the value of each ad, the learning algorithm will explore

• How will exploration shape the preferences of the population?

- General interest: Capture the effect of the history of ads placed on the preferences? Remarks on this later
- For now, assume an extreme case of the system wanting to **shape the population** preferences through the ads placed or, in the case of a recommendation system, the items that it recommends—Opinion shaping or opinion control.

DM

- Consider an ad placement system (APS) that has to display *k* out of *m* possible ads.
 - Value of an ad to the APS is the click-through proabability for the ad.
 - Further different ads could provide different revenues with a click-through.
 - There is an incentive to place items with low click-through probabilities.
- Not unreasonable that the click-through probability depends on the history of ads seen before

• Some are annoyed by repetition; for others disinterest can turn to curiosity.

• If the APS is learning the interests of the user, and hence the value of each ad, the learning algorithm will explore

• How will exploration shape the preferences of the population?

- General interest: Capture the effect of the history of ads placed on the preferences? Remarks on this later
- For now, assume an extreme case of the system wanting to **shape the population** preferences through the ads placed or, in the case of a recommendation system, the items that it recommends—Opinion shaping or opinion control.

DM

- Consider an ad placement system (APS) that has to display *k* out of *m* possible ads.
 - Value of an ad to the APS is the click-through proabability for the ad.
 - Further different ads could provide different revenues with a click-through.
 - There is an incentive to place items with low click-through probabilities.
- Not unreasonable that the click-through probability depends on the history of ads seen before
 - Some are annoyed by repetition; for others disinterest can turn to curiosity.
- If the APS is learning the interests of the user, and hence the value of each ad, the learning algorithm will explore

• How will exploration shape the preferences of the population?

- General interest: Capture the effect of the history of ads placed on the preferences? Remarks on this later
- For now, assume an extreme case of the system wanting to **shape the population** preferences through the ads placed or, in the case of a recommendation system, the items that it recommends—Opinion shaping or opinion control.

DM

イロト (語) (ヨ) (ヨ)

- Consider an ad placement system (APS) that has to display *k* out of *m* possible ads.
 - Value of an ad to the APS is the click-through proabability for the ad.
 - Further different ads could provide different revenues with a click-through.
 - There is an incentive to place items with low click-through probabilities.
- Not unreasonable that the click-through probability depends on the history of ads seen before
 - Some are annoyed by repetition; for others disinterest can turn to curiosity.
- If the APS is learning the interests of the user, and hence the value of each ad, the learning algorithm will explore

• How will exploration shape the preferences of the population?

- General interest: Capture the effect of the history of ads placed on the preferences? Remarks on this later
- For now, assume an extreme case of the system wanting to shape the population preferences through the ads placed or, in the case of a recommendation system, the items that it recommends—Opinion shaping or opinion control.

DM

- Consider an ad placement system (APS) that has to display *k* out of *m* possible ads.
 - Value of an ad to the APS is the click-through proabability for the ad.
 - Further different ads could provide different revenues with a click-through.
 - There is an incentive to place items with low click-through probabilities.
- Not unreasonable that the click-through probability depends on the history of ads seen before
 - Some are annoyed by repetition; for others disinterest can turn to curiosity.
- If the APS is learning the interests of the user, and hence the value of each ad, the learning algorithm will explore
 - How will exploration shape the preferences of the population?
- General interest: Capture the effect of the history of ads placed on the preferences? Remarks on this later
- For now, assume an extreme case of the system wanting to shape the population preferences through the ads placed or, in the case of a recommendation system, the items that it recommends—Opinion shaping or opinion control.

DM

- Consider an ad placement system (APS) that has to display *k* out of *m* possible ads.
 - Value of an ad to the APS is the click-through proabability for the ad.
 - Further different ads could provide different revenues with a click-through.
 - There is an incentive to place items with low click-through probabilities.
- Not unreasonable that the click-through probability depends on the history of ads seen before
 - Some are annoyed by repetition; for others disinterest can turn to curiosity.
- If the APS is learning the interests of the user, and hence the value of each ad, the learning algorithm will explore
 - How will exploration shape the preferences of the population?
- General interest: Capture the effect of the history of ads placed on the preferences? Remarks on this later
- For now, assume an extreme case of the system wanting to shape the population preferences through the ads placed or, in the case of a recommendation system, the items that it recommends—Opinion shaping or opinion control.

DM

- Consider an ad placement system (APS) that has to display *k* out of *m* possible ads.
 - Value of an ad to the APS is the click-through proabability for the ad.
 - Further different ads could provide different revenues with a click-through.
 - There is an incentive to place items with low click-through probabilities.
- Not unreasonable that the click-through probability depends on the history of ads seen before
 - Some are annoyed by repetition; for others disinterest can turn to curiosity.
- If the APS is learning the interests of the user, and hence the value of each ad, the learning algorithm will explore
 - How will exploration shape the preferences of the population?
- General interest: Capture the effect of the history of ads placed on the preferences? Remarks on this later
- For now, assume an extreme case of the system wanting to shape the population preferences through the ads placed or, in the case of a recommendation system, the items that it recommends—Opinion shaping or opinion control.

DM

- Consider an ad placement system (APS) that has to display *k* out of *m* possible ads.
 - Value of an ad to the APS is the click-through proabability for the ad.
 - Further different ads could provide different revenues with a click-through.
 - There is an incentive to place items with low click-through probabilities.
- Not unreasonable that the click-through probability depends on the history of ads seen before
 - Some are annoyed by repetition; for others disinterest can turn to curiosity.
- If the APS is learning the interests of the user, and hence the value of each ad, the learning algorithm will explore
 - How will exploration shape the preferences of the population?
- General interest: Capture the effect of the history of ads placed on the preferences? Remarks on this later
- For now, assume an extreme case of the system wanting to **shape the population** preferences through the ads placed or, in the case of a recommendation system, the items that it recommends—Opinion shaping or opinion control.

- Consider an ad placement system (APS) that has to display *k* out of *m* possible ads.
 - Value of an ad to the APS is the click-through proabability for the ad.
 - Further different ads could provide different revenues with a click-through.
 - There is an incentive to place items with low click-through probabilities.
- Not unreasonable that the click-through probability depends on the history of ads seen before
 - Some are annoyed by repetition; for others disinterest can turn to curiosity.
- If the APS is learning the interests of the user, and hence the value of each ad, the learning algorithm will explore
 - How will exploration shape the preferences of the population?
- General interest: Capture the effect of the history of ads placed on the preferences? Remarks on this later
- For now, assume an extreme case of the system wanting to **shape the population** preferences through the ads placed or, in the case of a recommendation system, the items that it recommends—Opinion shaping or opinion control.

- Consider an ad placement system (APS) that has to display *k* out of *m* possible ads.
 - Value of an ad to the APS is the click-through proabability for the ad.
 - Further different ads could provide different revenues with a click-through.
 - There is an incentive to place items with low click-through probabilities.
- Not unreasonable that the click-through probability depends on the history of ads seen before
 - Some are annoyed by repetition; for others disinterest can turn to curiosity.
- If the APS is learning the interests of the user, and hence the value of each ad, the learning algorithm will explore
 - How will exploration shape the preferences of the population?
- General interest: Capture the effect of the history of ads placed on the preferences? Remarks on this later
- For now, assume an extreme case of the system wanting to **shape the population** preferences through the ads placed or, in the case of a recommendation system, the items that it recommends—Opinion shaping or opinion control.

- Consider an ad placement system (APS) that has to display *k* out of *m* possible ads.
 - Value of an ad to the APS is the click-through proabability for the ad.
 - Further different ads could provide different revenues with a click-through.
 - There is an incentive to place items with low click-through probabilities.
- Not unreasonable that the click-through probability depends on the history of ads seen before
 - Some are annoyed by repetition; for others disinterest can turn to curiosity.
- If the APS is learning the interests of the user, and hence the value of each ad, the learning algorithm will explore
 - How will exploration shape the preferences of the population?
- General interest: Capture the effect of the history of ads placed on the preferences? Remarks on this later
- For now, assume an extreme case of the system wanting to **shape the population** preferences through the ads placed or, in the case of a recommendation system, the items that it recommends—Opinion shaping or opinion control.

- Two types of users in the population distinguished by preferences; Recommendation system, or an APS, *S* serves the population.
- *S* recommends one of two arms to each arriving user.
- Time is discrete and takes values $t \in [1 : T]$.
- At time *t*, a user of type $X_t \in \{1, 2\}$ arrives, *S* observes the type and shows arm $A_t \in \{a_1, a_2\}$.
- Fraction of type 1 and type 2 users is tracked by an urn containing colored balls—colors 1 and 2 correspond to, respectively, types 1 and 2.
- Fraction of type 1 users in the population equals the fraction of type 1 balls in the urn.

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト …

- Two types of users in the population distinguished by preferences; Recommendation system, or an APS, *S* serves the population.
- *S* recommends one of two arms to each arriving user.
- Time is discrete and takes values $t \in [1 : T]$.
- At time *t*, a user of type $X_t \in \{1, 2\}$ arrives, *S* observes the type and shows arm $A_t \in \{a_1, a_2\}$.
- Fraction of type 1 and type 2 users is tracked by an urn containing colored balls—colors 1 and 2 correspond to, respectively, types 1 and 2.
- Fraction of type 1 users in the population equals the fraction of type 1 balls in the urn.

イロン 不得 とくほ とくほ とうほう

- Two types of users in the population distinguished by preferences; Recommendation system, or an APS, *S* serves the population.
- *S* recommends one of two arms to each arriving user.
- Time is discrete and takes values $t \in [1:T]$.
- At time *t*, a user of type $X_t \in \{1, 2\}$ arrives, *S* observes the type and shows arm $A_t \in \{a_1, a_2\}$.
- Fraction of type 1 and type 2 users is tracked by an urn containing colored balls—colors 1 and 2 correspond to, respectively, types 1 and 2.
- Fraction of type 1 users in the population equals the fraction of type 1 balls in the urn.

- Two types of users in the population distinguished by preferences; Recommendation system, or an APS, *S* serves the population.
- *S* recommends one of two arms to each arriving user.
- Time is discrete and takes values $t \in [1:T]$.
- At time *t*, a user of type $X_t \in \{1, 2\}$ arrives, *S* observes the type and shows arm $A_t \in \{a_1, a_2\}$.
- Fraction of type 1 and type 2 users is tracked by an urn containing colored balls—colors 1 and 2 correspond to, respectively, types 1 and 2.
- Fraction of type 1 users in the population equals the fraction of type 1 balls in the urn.

- Two types of users in the population distinguished by preferences; Recommendation system, or an APS, *S* serves the population.
- *S* recommends one of two arms to each arriving user.
- Time is discrete and takes values $t \in [1:T]$.
- At time *t*, a user of type $X_t \in \{1, 2\}$ arrives, *S* observes the type and shows arm $A_t \in \{a_1, a_2\}$.
- Fraction of type 1 and type 2 users is tracked by an urn containing colored balls—colors 1 and 2 correspond to, respectively, types 1 and 2.
- Fraction of type 1 users in the population equals the fraction of type 1 balls in the urn.

DM

- Two types of users in the population distinguished by preferences; Recommendation system, or an APS, *S* serves the population.
- *S* recommends one of two arms to each arriving user.
- Time is discrete and takes values $t \in [1:T]$.
- At time *t*, a user of type $X_t \in \{1, 2\}$ arrives, *S* observes the type and shows arm $A_t \in \{a_1, a_2\}$.
- Fraction of type 1 and type 2 users is tracked by an urn containing colored balls—colors 1 and 2 correspond to, respectively, types 1 and 2.
- Fraction of type 1 users in the population equals the fraction of type 1 balls in the urn.

Reward Structure

- Suppose $X_t = i$ and $A_t = j$
- *S* gets a random Bernoulli reward $W_t \in \{0, 1\}$ with mean b_{ij}
- $B = [[b_{ij}]]$ is the reward means matrix.
- WLOG, assume b_{ii} is the maximum in row *i* of *B*.

• Population Dynamics

- $Z_i(t)$ is the number of type *i* balls in urn at time *t*.
- $N_0 = Z_1(0) + Z_2(0)$ is the total number of balls at t = 0.
- User arriving at time *t* is of type *i* with probability $\gamma(t) = \mathcal{I}(t)/(\sum_{i=1}^{n} \mathcal{I}(t))$
 - $z_i(t) = Z_i(t) / (\sum_j Z_j(t)).$
- Realization of reward at time t, Wt, causes urn to be updated.

DM

• Two evolution models for the urn.

Reward Structure

- Suppose $X_t = i$ and $A_t = j$
- *S* gets a random Bernoulli reward $W_t \in \{0, 1\}$ with mean b_{ij}
- $B = [[b_{ij}]]$ is the reward means matrix.
- WLOG, assume b_{ii} is the maximum in row i of B.

• Population Dynamics

- $Z_i(t)$ is the number of type *i* balls in urn at time *t*.
- $N_0 = Z_1(0) + Z_2(0)$ is the total number of balls at t = 0.
- User arriving at time *t* is of type *i* with probability $a_i(x) = a_i(x)/(\sum_{i=1}^{n} a_i(x))$
 - $z_i(t) = Z_i(t) / (\sum_j Z_j(t)).$
- Realization of reward at time t, W_t, causes urn to be updated.

DM

• Two evolution models for the urn.

Reward Structure

- Suppose $X_t = i$ and $A_t = j$
- *S* gets a random Bernoulli reward $W_t \in \{0, 1\}$ with mean b_{ij}
- $B = [[b_{ij}]]$ is the reward means matrix.
- WLOG, assume b_{ii} is the maximum in row *i* of *B*.

• Population Dynamics

- $Z_i(t)$ is the number of type *i* balls in urn at time *t*.
- $N_0 = Z_1(0) + Z_2(0)$ is the total number of balls at t = 0.
- User arriving at time *t* is of type *i* with probability $r(x) = \frac{1}{2} \left(\frac{1}{2} \right)^{2} \left(\frac{1}{2} \right)^{2}$
 - $z_i(t) = Z_i(t)/(\sum_j Z_j(t)).$
- Realization of reward at time t, Wt, causes urn to be updated.

DM

• Two evolution models for the urn.

э.

Reward Structure

- Suppose $X_t = i$ and $A_t = j$
- *S* gets a random Bernoulli reward $W_t \in \{0, 1\}$ with mean b_{ij}
- $B = [[b_{ij}]]$ is the reward means matrix.
- WLOG, assume b_{ii} is the maximum in row *i* of *B*.
- Population Dynamics
 - $Z_i(t)$ is the number of type *i* balls in urn at time *t*.
 - $N_0 = Z_1(0) + Z_2(0)$ is the total number of balls at t = 0.
 - User arriving at time *t* is of type *i* with probability
 - $z_i(t) = Z_i(t) / (\sum_j Z_j(t)).$
 - Realization of reward at time t, W_t, causes urn to be updated.

DM

• Two evolution models for the urn.

э.

Reward Structure

- Suppose $X_t = i$ and $A_t = j$
- *S* gets a random Bernoulli reward $W_t \in \{0, 1\}$ with mean b_{ij}
- $B = [[b_{ij}]]$ is the reward means matrix.
- WLOG, assume b_{ii} is the maximum in row *i* of *B*.
- Population Dynamics
 - $Z_i(t)$ is the number of type *i* balls in urn at time *t*.
 - $N_0 = Z_1(0) + Z_2(0)$ is the total number of balls at t = 0.
 - User arriving at time *t* is of type *i* with probability
 - $z_i(t) = Z_i(t) / (\sum_j Z_j(t)).$
 - Realization of reward at time t, W_t, causes urn to be updated.

DM

• Two evolution models for the urn.

Reward Structure

- Suppose $X_t = i$ and $A_t = j$
- *S* gets a random Bernoulli reward $W_t \in \{0, 1\}$ with mean b_{ij}
- $B = [[b_{ij}]]$ is the reward means matrix.
- WLOG, assume b_{ii} is the maximum in row *i* of *B*.

Population Dynamics

- $Z_i(t)$ is the number of type *i* balls in urn at time *t*.
- $N_0 = Z_1(0) + Z_2(0)$ is the total number of balls at t = 0.
- User arriving at time *t* is of type *i* with probability $z_i(t) = Z_i(t)/(\sum_i Z_j(t)).$
- Realization of reward at time t, W_t , causes urn to be updated.

DM

• Two evolution models for the urn.

Reward Structure

- Suppose $X_t = i$ and $A_t = j$
- *S* gets a random Bernoulli reward $W_t \in \{0, 1\}$ with mean b_{ij}
- $B = [[b_{ij}]]$ is the reward means matrix.
- WLOG, assume b_{ii} is the maximum in row *i* of *B*.

Population Dynamics

- $Z_i(t)$ is the number of type *i* balls in urn at time *t*.
- $N_0 = Z_1(0) + Z_2(0)$ is the total number of balls at t = 0.
- User arriving at time *t* is of type *i* with probability $z_i(t) = Z_i(t)/(\sum_i Z_j(t)).$
- Realization of reward at time t, W_t , causes urn to be updated.

DM

• Two evolution models for the urn.

Reward Structure

- Suppose $X_t = i$ and $A_t = j$
- *S* gets a random Bernoulli reward $W_t \in \{0, 1\}$ with mean b_{ij}
- $B = [[b_{ij}]]$ is the reward means matrix.
- WLOG, assume b_{ii} is the maximum in row *i* of *B*.

Population Dynamics

- $Z_i(t)$ is the number of type *i* balls in urn at time *t*.
- $N_0 = Z_1(0) + Z_2(0)$ is the total number of balls at t = 0.
- User arriving at time *t* is of type *i* with probability $z_i(t) = Z_i(t)/(\sum_i Z_i(t)).$
- Realization of reward at time t, W_t , causes urn to be updated.

DM

• Two evolution models for the urn.

Reward Structure

- Suppose $X_t = i$ and $A_t = j$
- *S* gets a random Bernoulli reward $W_t \in \{0, 1\}$ with mean b_{ij}
- $B = [[b_{ij}]]$ is the reward means matrix.
- WLOG, assume b_{ii} is the maximum in row *i* of *B*.

Population Dynamics

- $Z_i(t)$ is the number of type *i* balls in urn at time *t*.
- $N_0 = Z_1(0) + Z_2(0)$ is the total number of balls at t = 0.
- User arriving at time *t* is of type *i* with probability $z_i(t) = Z_i(t)/(\sum_j Z_j(t)).$
- Realization of reward at time t, W_t , causes urn to be updated.

DM

• Two evolution models for the urn.

Reward Structure

- Suppose $X_t = i$ and $A_t = j$
- *S* gets a random Bernoulli reward $W_t \in \{0, 1\}$ with mean b_{ij}
- $B = [[b_{ij}]]$ is the reward means matrix.
- WLOG, assume b_{ii} is the maximum in row *i* of *B*.

Population Dynamics

- $Z_i(t)$ is the number of type *i* balls in urn at time *t*.
- $N_0 = Z_1(0) + Z_2(0)$ is the total number of balls at t = 0.
- User arriving at time *t* is of type *i* with probability $z_i(t) = Z_i(t)/(\sum_j Z_j(t)).$
- Realization of reward at time t, W_t , causes urn to be updated.

DM

• Two evolution models for the urn.

Reward Structure

- Suppose $X_t = i$ and $A_t = j$
- *S* gets a random Bernoulli reward $W_t \in \{0, 1\}$ with mean b_{ij}
- $B = [[b_{ij}]]$ is the reward means matrix.
- WLOG, assume b_{ii} is the maximum in row *i* of *B*.

Population Dynamics

- $Z_i(t)$ is the number of type *i* balls in urn at time *t*.
- $N_0 = Z_1(0) + Z_2(0)$ is the total number of balls at t = 0.
- User arriving at time *t* is of type *i* with probability $z_i(t) = Z_i(t)/(\sum_j Z_j(t)).$
- Realization of reward at time t, W_t , causes urn to be updated.

DM

• Two evolution models for the urn.

• **Decreasing influence dynamics (DID) model:** Population becomes less plastic with time.

- Total number of balls in the urn increases by one each time.
- If $W_t = 1$, add ball of type A_t to urn
- If $W_t = 0$, add ball of type $-A_t$ to urn

$$Z_{A_t}(t+1) = Z_{A_t}(t) + W_t,$$

$$Z_{-A_t}(t+1) = Z_{-A_t}(t) + (1 - W_t).$$

• Constant Influence Model: Voter model

- Total number of balls in the urn remains constant
- If X_t is shown shown arm a_{−X}, and W_t = 1, OR if it is shown are a₂, and W_t → 0 then one ball of type X_t switches colors.
- No change otherwise.
- Writing $\theta_i = \{A_i = a_{-X_i}\}$, the unit evolution will be

$$Z_{A_{1}}(t + 1) = Z_{A_{2}}(t) + (1_{A_{1}} \oplus W_{1})_{s}$$

 $Z_{-A_{1}}(t + 1) = Z_{-A_{2}}(t) - (1_{A_{1}} \oplus W_{2})_{s}$

 Reiterate: B does not change with time. Only Z, and hence population preference, changes.
< □ > < ∂ > < ≥ > < ≥ < ≥ <

- **Decreasing influence dynamics (DID) model:** Population becomes less plastic with time.
 - Total number of balls in the urn increases by one each time.
 - If $W_t = 1$, add ball of type A_t to urn
 - If $W_t = 0$, add ball of type $-A_t$ to urn

 $Z_{A_t}(t+1) = Z_{A_t}(t) + W_t,$ $Z_{-A_t}(t+1) = Z_{-A_t}(t) + (1 - W_t).$

• Constant Influence Model: Voter model

- Total number of balls in the urn remains constant
- If X_t is shown shown arm a_{−X}, and W_t = 1, OR if it is shown are a_t, and W_t → 0 then one ball of type X_t switches colors
- No change otherwise.
- Writing $\theta_i = \{A_i = a_{-X_i}\}$, the unit evolution will be

 $Z_{A_1}(t + 1) = Z_{A_2}(t) + (1_{A_1} \oplus W_1)_{+}$ $Z_{-A_1}(t + 1) = Z_{-A_2}(t) - (1_{A_1} \oplus W_2)_{+}$

Reiterate: B does not change with time. Only Z, and hence population preference, changes.
< □ > < ∂ > < ≥ > < ≥ < ≥ < ≥

- **Decreasing influence dynamics (DID) model:** Population becomes less plastic with time.
 - Total number of balls in the urn increases by one each time.
 - If $W_t = 1$, add ball of type A_t to urn
 - If $W_t = 0$, add ball of type $-A_t$ to urn

 $Z_{A_t}(t+1) = Z_{A_t}(t) + W_t,$ $Z_{-A_t}(t+1) = Z_{-A_t}(t) + (1 - W_t).$

• Constant Influence Model: Voter model

- Total number of balls in the urn remains constant
- If X_t is shown shown arm a_{−X}, and W_t = 1, OR if it is shown are a_t, and W_t == 0 there are ball of type X_t switches colors.
- No change otherwise.
- Writing $\theta_i = \{A_i = a_{-X_i}\}$, the unit evolution will be

 $Z_{A_{1}}(t + 1) = Z_{A_{2}}(t) + (1_{A_{1}} \oplus W_{1})_{s}$ $Z_{-A_{1}}(t + 1) = Z_{-A_{2}}(t) - (1_{A_{1}} \oplus W_{2})_{s}$

Reiterate: B does not change with time. Only Z, and hence population preference, changes.
< □ > < ∂ > < ≥ > < ≥ < ≥ < ≥

- **Decreasing influence dynamics (DID) model:** Population becomes less plastic with time.
 - Total number of balls in the urn increases by one each time.
 - If $W_t = 1$, add ball of type A_t to urn
 - If $W_t = 0$, add ball of type $-A_t$ to urn

$$Z_{A_t}(t+1) = Z_{A_t}(t) + W_t,$$

$$Z_{-A_t}(t+1) = Z_{-A_t}(t) + (1 - W_t).$$

• Constant Influence Model: Voter model

- Total number of balls in the urn remains constant
- If X_i is shown shown arm a_{−X_i} and W_i = 1, OK if it is shown arm a_i and W_i == 0 there exist all of type X_i switches colore
- No change otherwise.
- Writing $\theta_i = \{A_i = a_{-X_i}\}$, the unit evolution will be

$$Z_{A_{1}}(t + 1) = Z_{A_{2}}(t) + (1_{A_{1}} \oplus W_{1})_{s}$$

 $Z_{-A_{1}}(t + 1) = Z_{-A_{2}}(t) - (1_{A_{1}} \oplus W_{2})_{s}$

 Reiterate: B does not change with time. Only Z, and hence population preference, changes.
< □ > < ∂ > < ≥ > < ≥ < ≥ <
- **Decreasing influence dynamics (DID) model:** Population becomes less plastic with time.
 - Total number of balls in the urn increases by one each time.
 - If $W_t = 1$, add ball of type A_t to urn
 - If $W_t = 0$, add ball of type $-A_t$ to urn

$$Z_{A_t}(t+1) = Z_{A_t}(t) + W_t,$$

$$Z_{-A_t}(t+1) = Z_{-A_t}(t) + (1 - W_t).$$

• Constant Influence Model: Voter model

- Total number of balls in the urn remains constant
- If X_t is shown shown arm a_{-X_t} and $W_t = 1$, OR if it is shown arn a_{X_t} and $W_t = 0$ then one ball of type X_t switches colors
- No change otherwise.
- Writing $\theta_t = \{A_t = a_{-X_t}\}$, the urn evolution will be

 $Z_{A_t}(t+1) = Z_{A_t}(t) + (\mathbb{1}_{\theta_t} \oplus W_t),$ $Z_{-A_t}(t+1) = Z_{-A_t}(t) - (\mathbb{1}_{\theta_t} \oplus W_t).$

 Reiterate: B does not change with time. Only Z, and hence population preference, changes.
 < □ > < ∅ > < ≅ > < ≅ > < ≅

- **Decreasing influence dynamics (DID) model:** Population becomes less plastic with time.
 - Total number of balls in the urn increases by one each time.
 - If $W_t = 1$, add ball of type A_t to urn
 - If $W_t = 0$, add ball of type $-A_t$ to urn

$$Z_{A_t}(t+1) = Z_{A_t}(t) + W_t,$$

$$Z_{-A_t}(t+1) = Z_{-A_t}(t) + (1 - W_t).$$

• Constant Influence Model: Voter model

- Total number of balls in the urn remains constant
- If X_t is shown shown arm a_{-X_t} and $W_t = 1$, OR if it is shown arm a_{X_t} and $W_t = 0$ then one ball of type X_t switches colors
- No change otherwise.
- Writing $\theta_t = \{A_t = a_{-X_t}\}$, the urn evolution will be

 $Z_{A_t}(t+1) = Z_{A_t}(t) + (\mathbb{1}_{\theta_t} \oplus W_t) ,$ $Z_{-A_t}(t+1) = Z_{-A_t}(t) - (\mathbb{1}_{\theta_t} \oplus W_t) .$

 Reiterate: B does not change with time. Only Z, and hence population preference, changes.
 < □ > < ∂ > < ≥ > < ≥ < ≥

- **Decreasing influence dynamics (DID) model:** Population becomes less plastic with time.
 - Total number of balls in the urn increases by one each time.
 - If $W_t = 1$, add ball of type A_t to urn
 - If $W_t = 0$, add ball of type $-A_t$ to urn

$$Z_{A_t}(t+1) = Z_{A_t}(t) + W_t,$$

$$Z_{-A_t}(t+1) = Z_{-A_t}(t) + (1 - W_t).$$

• Constant Influence Model: Voter model

- Total number of balls in the urn remains constant
- If X_t is shown shown arm a_{-X_t} and $W_t = 1$, *OR* if it is shown arn a_{X_t} and $W_t = 0$ then one ball of type X_t switches colors
- No change otherwise.
- Writing $\theta_t = \{A_t = a_{-X_t}\}$, the urn evolution will be

 $Z_{A_t}(t+1) = Z_{A_t}(t) + (\mathbb{1}_{\theta_t} \oplus W_t),$

 $Z_{-A_t}(t+1) = Z_{-A_t}(t) - (\mathbb{1}_{\theta_t} \oplus W_t) \,.$

Reiterate: B does not change with time. Only Z, and hence population preference, changes.
 < □ > < ∂ > < ≥ > < ≥ < ≥ < ≥

- **Decreasing influence dynamics (DID) model:** Population becomes less plastic with time.
 - Total number of balls in the urn increases by one each time.
 - If $W_t = 1$, add ball of type A_t to urn
 - If $W_t = 0$, add ball of type $-A_t$ to urn

$$Z_{A_t}(t+1) = Z_{A_t}(t) + W_t,$$

$$Z_{-A_t}(t+1) = Z_{-A_t}(t) + (1 - W_t).$$

• Constant Influence Model: Voter model

- Total number of balls in the urn remains constant
- If X_t is shown shown arm a_{-X_t} and $W_t = 1$, *OR* if it is shown arn a_{X_t} and $W_t = 0$ then one ball of type X_t switches colors
- No change otherwise.
- Writing $\theta_t = \{A_t = a_{-X_t}\}$, the urn evolution will be

 $Z_{A_t}(t+1) = Z_{A_t}(t) + (\mathbb{1}_{\theta_t} \oplus W_t),$

 $Z_{-A_t}(t+1) = Z_{-A_t}(t) - (\mathbb{1}_{\theta_t} \oplus W_t) \,.$

Reiterate: B does not change with time. Only Z, and hence population preference, changes.
 < □ > < ∂ > < ≥ > < ≥ < ≥ < ≥

- **Decreasing influence dynamics (DID) model:** Population becomes less plastic with time.
 - Total number of balls in the urn increases by one each time.
 - If $W_t = 1$, add ball of type A_t to urn
 - If $W_t = 0$, add ball of type $-A_t$ to urn

$$Z_{A_t}(t+1) = Z_{A_t}(t) + W_t,$$

$$Z_{-A_t}(t+1) = Z_{-A_t}(t) + (1 - W_t).$$

• Constant Influence Model: Voter model

- Total number of balls in the urn remains constant
- If X_t is shown shown arm a_{-X_t} and $W_t = 1$, *OR* if it is shown arn a_{X_t} and $W_t = 0$ then one ball of type X_t switches colors
- No change otherwise.
- Writing $\theta_t = \{A_t = a_{-X_t}\}$, the urn evolution will be

$$Z_{A_t}(t+1) = Z_{A_t}(t) + (\mathbb{1}_{\theta_t} \oplus W_t),$$

$$Z_{-A_t}(t+1) = Z_{-A_t}(t) - (\mathbb{1}_{\theta_t} \oplus W_t).$$

Reiterate: B does not change with time. Only Z, and hence population preference, changes.

- **Decreasing influence dynamics (DID) model:** Population becomes less plastic with time.
 - Total number of balls in the urn increases by one each time.
 - If $W_t = 1$, add ball of type A_t to urn
 - If $W_t = 0$, add ball of type $-A_t$ to urn

$$Z_{A_t}(t+1) = Z_{A_t}(t) + W_t,$$

$$Z_{-A_t}(t+1) = Z_{-A_t}(t) + (1 - W_t).$$

• Constant Influence Model: Voter model

- Total number of balls in the urn remains constant
- If X_t is shown shown arm a_{-X_t} and $W_t = 1$, *OR* if it is shown arn a_{X_t} and $W_t = 0$ then one ball of type X_t switches colors
- No change otherwise.
- Writing $\theta_t = \{A_t = a_{-X_t}\}$, the urn evolution will be

$$Z_{A_t}(t+1) = Z_{A_t}(t) + (\mathbb{1}_{\theta_t} \oplus W_t),$$

$$Z_{-A_t}(t+1) = Z_{-A_t}(t) - (\mathbb{1}_{\theta_t} \oplus W_t).$$

Reiterate: B does not change with time. Only Z, and hence population preference, changes.

- **Decreasing influence dynamics (DID) model:** Population becomes less plastic with time.
 - Total number of balls in the urn increases by one each time.
 - If $W_t = 1$, add ball of type A_t to urn
 - If $W_t = 0$, add ball of type $-A_t$ to urn

$$Z_{A_t}(t+1) = Z_{A_t}(t) + W_t,$$

$$Z_{-A_t}(t+1) = Z_{-A_t}(t) + (1 - W_t).$$

• Constant Influence Model: Voter model

- Total number of balls in the urn remains constant
- If X_t is shown shown arm a_{-X_t} and $W_t = 1$, *OR* if it is shown arn a_{X_t} and $W_t = 0$ then one ball of type X_t switches colors
- No change otherwise.
- Writing $\theta_t = \{A_t = a_{-X_t}\}$, the urn evolution will be

$$Z_{A_t}(t+1) = Z_{A_t}(t) + (\mathbb{1}_{\theta_t} \oplus W_t),$$

$$Z_{-A_t}(t+1) = Z_{-A_t}(t) - (\mathbb{1}_{\theta_t} \oplus W_t).$$

● Reiterate: *B* does not change with time. Only *Z*, and hence population preference, changes.

- **Objective:** Achieve maximum possible increase in $z_1(t) := Z_1(t)/(Z_1(t) + Z_2(t))$ at every step.
- **Policy:** A policy $\pi = (p_t, q_t)$ where, for all $t \in [1:T]$,

$$p_t = P(A_t = a_1 | X_t = 1, \{ X_\tau, A_\tau, W_\tau \}_{\tau < t})$$

$$q_t = P(A_t = a_2 | X_t = 2, \{ X_\tau, A_\tau, W_\tau \}_{\tau < t}).$$
(1)

• **Optimal policy:** (p_t, q_t) that maximizes expected increase in $z_1(t)$ given the population profile at time t,

$$(p_t^*, q_t^*) = \arg\max_{(p_t, q_t)} E\left[\Delta Z_1^{\pi}(t) | z_1(t)\right]$$
(2)

where $\Delta Z_1^{\pi}(t) = Z_1^{\pi}(t+1) - Z_1^{\pi}(t)$.

• **One-step regret:** Regret at time t, (R_t^{π}) for a policy π is

$$R_t^{\pi} := E\left[\Delta Z_1^*(t) - \Delta Z_1^{\pi}(t) \mid Z_1^*(t) = Z_1^{\pi}(t)\right].$$
 (3)

3

• Cumulative regret:

$$R_{[1:T]}^{\pi} = \sum_{t=1}^{T} R_t^{\pi}.$$

DM

- **Objective:** Achieve maximum possible increase in $z_1(t) := Z_1(t)/(Z_1(t) + Z_2(t))$ at every step.
- **Policy:** A policy $\pi = (p_t, q_t)$ where, for all $t \in [1:T]$,

$$p_t = P(A_t = a_1 | X_t = 1, \{X_\tau, A_\tau, W_\tau\}_{\tau < t})$$

$$q_t = P(A_t = a_2 | X_t = 2, \{X_\tau, A_\tau, W_\tau\}_{\tau < t}).$$
(1)

• **Optimal policy:** (p_t, q_t) that maximizes expected increase in $z_1(t)$ given the population profile at time t,

$$(p_t^*, q_t^*) = \arg\max_{(p_t, q_t)} E\left[\Delta Z_1^{\pi}(t) | z_1(t)\right]$$
(2)

where $\Delta Z_1^{\pi}(t) = Z_1^{\pi}(t+1) - Z_1^{\pi}(t)$.

• **One-step regret:** Regret at time t, (R_t^{π}) for a policy π is

$$R_t^{\pi} := E\left[\Delta Z_1^*(t) - \Delta Z_1^{\pi}(t) \mid Z_1^*(t) = Z_1^{\pi}(t)\right].$$
 (3)

э.

• Cumulative regret:

$$R_{[1:T]}^{\pi} = \sum_{t=1}^{T} R_t^{\pi}.$$

DM

- **Objective:** Achieve maximum possible increase in $z_1(t) := Z_1(t)/(Z_1(t) + Z_2(t))$ at every step.
- **Policy:** A policy $\pi = (p_t, q_t)$ where, for all $t \in [1:T]$,

$$p_t = P(A_t = a_1 | X_t = 1, \{X_\tau, A_\tau, W_\tau\}_{\tau < t})$$

$$q_t = P(A_t = a_2 | X_t = 2, \{X_\tau, A_\tau, W_\tau\}_{\tau < t}).$$
(1)

• **Optimal policy:** (p_t, q_t) that maximizes expected increase in $z_1(t)$ given the population profile at time t,

$$(p_t^*, q_t^*) = \arg\max_{(p_t, q_t)} E\left[\Delta Z_1^{\pi}(t) | z_1(t)\right]$$
(2)

where $\Delta Z_1^{\pi}(t) = Z_1^{\pi}(t+1) - Z_1^{\pi}(t)$.

• **One-step regret:** Regret at time t, (R_t^{π}) for a policy π is

$$R_t^{\pi} := E\left[\Delta Z_1^*(t) - \Delta Z_1^{\pi}(t) \mid Z_1^*(t) = Z_1^{\pi}(t)\right].$$
(3)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• Cumulative regret:

$$R_{[1:T]}^{\pi} = \sum_{t=1}^{T} R_t^{\pi}.$$

DM

- **Objective:** Achieve maximum possible increase in $z_1(t) := Z_1(t)/(Z_1(t) + Z_2(t))$ at every step.
- **Policy:** A policy $\pi = (p_t, q_t)$ where, for all $t \in [1:T]$,

$$p_t = P(A_t = a_1 | X_t = 1, \{X_\tau, A_\tau, W_\tau\}_{\tau < t})$$

$$q_t = P(A_t = a_2 | X_t = 2, \{X_\tau, A_\tau, W_\tau\}_{\tau < t}).$$
(1)

• **Optimal policy:** (p_t, q_t) that maximizes expected increase in $z_1(t)$ given the population profile at time t,

$$(p_t^*, q_t^*) = \arg\max_{(p_t, q_t)} E\left[\Delta Z_1^{\pi}(t) | z_1(t)\right]$$
(2)

where $\Delta Z_1^{\pi}(t) = Z_1^{\pi}(t+1) - Z_1^{\pi}(t)$.

• **One-step regret:** Regret at time t, (R_t^{π}) for a policy π is

$$R_t^{\pi} := E\left[\Delta Z_1^*(t) - \Delta Z_1^{\pi}(t) \mid Z_1^*(t) = Z_1^{\pi}(t)\right].$$
(3)

• Cumulative regret:

$$R_{[1:T]}^{\pi} = \sum_{t=1}^{T} R_t^{\pi}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- **Objective:** Achieve maximum possible increase in $z_1(t) := Z_1(t)/(Z_1(t) + Z_2(t))$ at every step.
- **Policy:** A policy $\pi = (p_t, q_t)$ where, for all $t \in [1:T]$,

$$p_t = P(A_t = a_1 | X_t = 1, \{X_\tau, A_\tau, W_\tau\}_{\tau < t})$$

$$q_t = P(A_t = a_2 | X_t = 2, \{X_\tau, A_\tau, W_\tau\}_{\tau < t}).$$
(1)

• **Optimal policy:** (p_t, q_t) that maximizes expected increase in $z_1(t)$ given the population profile at time t,

$$(p_t^*, q_t^*) = \arg\max_{(p_t, q_t)} E\left[\Delta Z_1^{\pi}(t) | z_1(t)\right]$$
(2)

where $\Delta Z_1^{\pi}(t) = Z_1^{\pi}(t+1) - Z_1^{\pi}(t)$.

• **One-step regret:** Regret at time t, (R_t^{π}) for a policy π is

$$R_t^{\pi} := E\left[\Delta Z_1^*(t) - \Delta Z_1^{\pi}(t) \mid Z_1^*(t) = Z_1^{\pi}(t)\right].$$
 (3)

• Cumulative regret:

$$R_{[1:T]}^{\pi} = \sum_{t=1}^{T} R_t^{\pi}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Decreasing Influence Dynamics Model

• Optimal policy is a simple stationary policy

Lemma

The optimal policy for the time slot t is

 $(p_t^*, q_t^*) = (\mathbb{1}_{\{b_{11}+b_{12}-1>0\}}, \mathbb{1}_{\{b_{21}+b_{22}-1<0\}}).$

- Optimal policy for type 1 is to recommend a_1 if they like a_1 more than they 'dislike' a_2 , and recommend a_2 otherwise.
- This is because of a negative reinforcement that can happen if a₁ is not liked or if a₂ is liked.
- *S* may recommend arms which are not preferred by the user. Example: For $B = (b_{11} = 0.9, b_{12} = 0.3, b_{21} = 0.4, b_{22} = 0.7)$, optimal policy is $(p^* = 1, q^* = 0)$.

DM

イロト イポト イヨト イヨト

• Optimal policy is a simple stationary policy

Lemma

The optimal policy for the time slot t is

$$(p_t^*, q_t^*) = (\mathbb{1}_{\{b_{11}+b_{12}-1>0\}}, \mathbb{1}_{\{b_{21}+b_{22}-1<0\}}).$$

- Optimal policy for type 1 is to recommend a_1 if they like a_1 more than they 'dislike' a_2 , and recommend a_2 otherwise.
- This is because of a negative reinforcement that can happen if a₁ is not liked or if a₂ is liked.
- *S* may recommend arms which are not preferred by the user. Example: For $B = (b_{11} = 0.9, b_{12} = 0.3, b_{21} = 0.4, b_{22} = 0.7)$, optimal policy is $(p^* = 1, q^* = 0)$.

DM

• Optimal policy is a simple stationary policy

Lemma

The optimal policy for the time slot t is

 $(p_t^*, q_t^*) = (\mathbb{1}_{\{b_{11}+b_{12}-1>0\}}, \mathbb{1}_{\{b_{21}+b_{22}-1<0\}}).$

- Optimal policy for type 1 is to recommend *a*₁ if they like *a*₁ more than they 'dislike' *a*₂, and recommend *a*₂ otherwise.
- This is because of a negative reinforcement that can happen if a_1 is not liked or if a_2 is liked.
- *S* may recommend arms which are not preferred by the user. Example: For $B = (b_{11} = 0.9, b_{12} = 0.3, b_{21} = 0.4, b_{22} = 0.7)$, optimal policy is $(p^* = 1, q^* = 0)$.

DM

ヘロト 人間 とくほとくほとう

• Optimal policy is a simple stationary policy

Lemma

The optimal policy for the time slot t is

 $(p_t^*, q_t^*) = (\mathbb{1}_{\{b_{11}+b_{12}-1>0\}}, \mathbb{1}_{\{b_{21}+b_{22}-1<0\}}).$

- Optimal policy for type 1 is to recommend *a*₁ if they like *a*₁ more than they 'dislike' *a*₂, and recommend *a*₂ otherwise.
- This is because of a negative reinforcement that can happen if a_1 is not liked or if a_2 is liked.
- *S* may recommend arms which are not preferred by the user. Example: For $B = (b_{11} = 0.9, b_{12} = 0.3, b_{21} = 0.4, b_{22} = 0.7)$, optimal policy is $(p^* = 1, q^* = 0)$.

DM

ヘロト 人間 とくほとくほとう

• Optimal policy is a simple stationary policy

Lemma

The optimal policy for the time slot t is

 $(p_t^*, q_t^*) = (\mathbb{1}_{\{b_{11}+b_{12}-1>0\}}, \mathbb{1}_{\{b_{21}+b_{22}-1<0\}}).$

- Optimal policy for type 1 is to recommend *a*₁ if they like *a*₁ more than they 'dislike' *a*₂, and recommend *a*₂ otherwise.
- This is because of a negative reinforcement that can happen if *a*₁ is not liked or if *a*₂ is liked.
- *S* may recommend arms which are not preferred by the user. Example: For $B = (b_{11} = 0.9, b_{12} = 0.3, b_{21} = 0.4, b_{22} = 0.7)$, optimal policy is $(p^* = 1, q^* = 0)$.

DM

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへで

• Optimal policy is a simple stationary policy

Lemma

The optimal policy for the time slot t is

 $(p_t^*, q_t^*) = (\mathbb{1}_{\{b_{11}+b_{12}-1>0\}}, \mathbb{1}_{\{b_{21}+b_{22}-1<0\}}).$

- Optimal policy for type 1 is to recommend *a*₁ if they like *a*₁ more than they 'dislike' *a*₂, and recommend *a*₂ otherwise.
- This is because of a negative reinforcement that can happen if *a*₁ is not liked or if *a*₂ is liked.
- *S* may recommend arms which are not preferred by the user. Example: For $B = (b_{11} = 0.9, b_{12} = 0.3, b_{21} = 0.4, b_{22} = 0.7)$, optimal policy is $(p^* = 1, q^* = 0)$.

DM

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Optimal policy is a simple stationary policy

Lemma

The optimal policy for the time slot t is

 $(p_t^*, q_t^*) = (\mathbb{1}_{\{b_{11}+b_{12}-1>0\}}, \mathbb{1}_{\{b_{21}+b_{22}-1<0\}}).$

- Optimal policy for type 1 is to recommend *a*₁ if they like *a*₁ more than they 'dislike' *a*₂, and recommend *a*₂ otherwise.
- This is because of a negative reinforcement that can happen if *a*₁ is not liked or if *a*₂ is liked.
- *S* may recommend arms which are not preferred by the user. Example: For $B = (b_{11} = 0.9, b_{12} = 0.3, b_{21} = 0.4, b_{22} = 0.7)$, optimal policy is $(p^* = 1, q^* = 0)$.

DM

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Optimal policy is a simple stationary policy

Lemma

The optimal policy for the time slot t is

$$(p_t^*, q_t^*) = (\mathbb{1}_{\{b_{11}+b_{12}-1>0\}}, \mathbb{1}_{\{b_{21}+b_{22}-1<0\}}).$$

- Optimal policy for type 1 is to recommend a_1 if they like a_1 more than they 'dislike' a_2 , and recommend a_2 otherwise.
- This is because of a negative reinforcement that can happen if *a*₁ is not liked or if *a*₂ is liked.
- *S* may recommend arms which are not preferred by the user. Example: For $B = (b_{11} = 0.9, b_{12} = 0.3, b_{21} = 0.4, b_{22} = 0.7)$, optimal policy is $(p^* = 1, q^* = 0)$.

DM

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへで

• Evolution of $z_1(t)$: Expectation monotonically approaches $d_2/(d_1 + d_2)$, the maximum that can be achieved with a policy of the form $(p_t = p, q_t = q)$.

Lemma

For a policy π with $(p_t, q_t) = (p, q)$, the expected proportion of type 1 users at time t is

$$z_1(t) = \frac{d_2}{d_1 + d_2} + \left(z_1(0) - \frac{d_2}{d_1 + d_2}\right) \left(1 + \frac{t}{N_0}\right)^{-(d_1 + d_2)}$$

Here $d_1 = p(1 - b_{11}) + (1 - p)b_{12}$, $d_2 = q(1 - b_{22}) + (1 - q)b_{21}$ and $z_1(0)$ is proportion of type 1 users at t = 0.

DM

イロン 不得 とくほ とくほ とうほう

• Evolution of $z_1(t)$: Expectation monotonically approaches $d_2/(d_1 + d_2)$, the maximum that can be achieved with a policy of the form $(p_t = p, q_t = q)$.

Lemma

For a policy π with $(p_t, q_t) = (p, q)$, the expected proportion of type 1 users at time t is

$$z_1(t) = \frac{d_2}{d_1 + d_2} + \left(z_1(0) - \frac{d_2}{d_1 + d_2}\right) \left(1 + \frac{t}{N_0}\right)^{-(d_1 + d_2)}$$

Here $d_1 = p(1 - b_{11}) + (1 - p)b_{12}$, $d_2 = q(1 - b_{22}) + (1 - q)b_{21}$ and $z_1(0)$ is proportion of type 1 users at t = 0.

DM

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• The policy also maximizes *z*₁

Theorem

The optimal policy also maximizes expected asymptotic proportion of type 1 users at $\left(\frac{d_2}{d_1+d_2}\right)$.

• Can write the evolution equations for $Z_1(t)$ and $z_1(t)$ as follows

$$Z_1(t+1) = Z_1(t) + \Delta Z_1(t)$$

= $Z_1(t) + (E[\Delta Z_1(t)|z_1(t)] + (\Delta Z_1(t) - E[\Delta Z_1(t)|z_1(t)])),$

where $E[\Delta Z_1(t)|z_1(t)] = z_1(t)(1-d_1) + (1-z_1(t))d_2.$

$$z_1(t+1) = z_1(t) + \frac{1}{N_0 + t + 1}(d_2 - (d_1 + d_2)z_1(t) + M_t)$$

• All sample paths followed by $z_1(t)$ converge asymptotically almost surely to $z_1 = d_2/(d_1 + d_2)$.

э

• The policy also maximizes *z*₁

Theorem

The optimal policy also maximizes expected asymptotic proportion of type 1 users at $\left(\frac{d_2}{d_1+d_2}\right)$.

• Can write the evolution equations for $Z_1(t)$ and $z_1(t)$ as follows

$$Z_{1}(t+1) = Z_{1}(t) + \Delta Z_{1}(t)$$

= $Z_{1}(t) + (E[\Delta Z_{1}(t)|z_{1}(t)] + (\Delta Z_{1}(t) - E[\Delta Z_{1}(t)|z_{1}(t)]))$

where $E[\Delta Z_1(t)|z_1(t)] = z_1(t)(1-d_1) + (1-z_1(t))d_2.$

$$z_1(t+1) = z_1(t) + \frac{1}{N_0 + t + 1}(d_2 - (d_1 + d_2)z_1(t) + M_t)$$

• All sample paths followed by $z_1(t)$ converge asymptotically almost surely to $z_1 = d_2/(d_1 + d_2)$.

• The policy also maximizes *z*₁

Theorem

The optimal policy also maximizes expected asymptotic proportion of type 1 users at $\left(\frac{d_2}{d_1+d_2}\right)$.

• Can write the evolution equations for $Z_1(t)$ and $z_1(t)$ as follows

$$Z_{1}(t+1) = Z_{1}(t) + \Delta Z_{1}(t)$$

= $Z_{1}(t) + (E[\Delta Z_{1}(t)|z_{1}(t)] + (\Delta Z_{1}(t) - E[\Delta Z_{1}(t)|z_{1}(t)])),$

where $E[\Delta Z_1(t)|z_1(t)] = z_1(t)(1-d_1) + (1-z_1(t))d_2.$

$$z_1(t+1) = z_1(t) + \frac{1}{N_0 + t + 1}(d_2 - (d_1 + d_2)z_1(t) + M_t)$$

• All sample paths followed by $z_1(t)$ converge asymptotically almost surely to $z_1 = d_2/(d_1 + d_2)$.

• The policy also maximizes *z*₁

Theorem

The optimal policy also maximizes expected asymptotic proportion of type 1 users at $\left(\frac{d_2}{d_1+d_2}\right)$.

• Can write the evolution equations for $Z_1(t)$ and $z_1(t)$ as follows

$$Z_{1}(t+1) = Z_{1}(t) + \Delta Z_{1}(t)$$

= $Z_{1}(t) + (E[\Delta Z_{1}(t)|z_{1}(t)] + (\Delta Z_{1}(t) - E[\Delta Z_{1}(t)|z_{1}(t)])),$

where $E[\Delta Z_1(t)|z_1(t)] = z_1(t)(1-d_1) + (1-z_1(t))d_2.$

$$z_1(t+1) = z_1(t) + \frac{1}{N_0 + t + 1}(d_2 - (d_1 + d_2)z_1(t) + M_t)$$

• All sample paths followed by $z_1(t)$ converge asymptotically almost surely to $z_1 = d_2/(d_1 + d_2)$.

Trajectory $z_1(t)$. Comparison of o.d.e. solution and averages from 1, 10 and 100 sample paths. *B* is $b_{00} = 0.9$, $b_{01} = 0.4$, $b_{10} = 0.2$, and $b_{11} = 0.6$.

Explore-Then-Commit

- Usual method: Explore by playing each arm uniformly for time *m* and estimate rewards matrix *B*. Exploit for time T m.
- General analysis is elusive; consider the special case of $b_{11} = b_{22}$ and $b_{12} = b_{21}$.

$$R_{[12]}^{arr} \le m\Delta_1/2 + (T - m)\Delta_1 e^{-m\Delta_1/2}$$
(4)

Further, using $m = 8 \log(T) / \Delta_1^2$ (to bring the regret bound in terms of T and eliminate m), we get a logarithmic regret, i.e.,

$$R_{BTC} \le \frac{4}{\Delta_1} \log(T) + O(1/T).$$
 (5)

イロト イポト イヨト イヨト

 ETC is inherently inefficient because, exploitation is during the most plastic phase.

DM

Explore-Then-Commit

- Usual method: Explore by playing each arm uniformly for time *m* and estimate rewards matrix *B*. Exploit for time T m.
- General analysis is elusive; consider the special case of $b_{11} = b_{22}$ and $b_{12} = b_{21}$.

$$R_{[12]}^{arr} \le m\Delta_1/2 + (T - m)\Delta_1 e^{-m\Delta_1/2}$$
(4)

Further, using $m = 8 \log(T) / \Delta_1^2$ (to bring the regret bound in terms of T and eliminate m), we get a logarithmic regret, i.e.,

$$R_{BTC} \le \frac{4}{\Delta_1} \log(T) + O(1/T).$$
 (5)

イロト イポト イヨト イヨト

 ETC is inherently inefficient because, exploitation is during the most plastic phase.

DM

Explore-Then-Commit

- Usual method: Explore by playing each arm uniformly for time m and estimate rewards matrix B. Exploit for time T m.
- General analysis is elusive; consider the special case of $b_{11} = b_{22}$ and $b_{12} = b_{21}$.

Theorem

$$R_{[1:T]}^{ETC} \le m\Delta_1/2 + (T-m)\Delta_1 e^{-m\Delta_1^2/8}$$
(4)

Further, using $m = 8 \log(T) / \Delta_1^2$ (to bring the regret bound in terms of T and eliminate m), we get a logarithmic regret, i.e.,

$$R_{ETC} \le \frac{4}{\Delta_1} \log(T) + \mathcal{O}(1/T).$$
(5)

• ETC is inherently inefficient because, exploitation is during the most plastic phase.

DM

Explore-Then-Commit

- Usual method: Explore by playing each arm uniformly for time m and estimate rewards matrix B. Exploit for time T m.
- General analysis is elusive; consider the special case of $b_{11} = b_{22}$ and $b_{12} = b_{21}$.

Theorem

$$R_{[1:T]}^{ETC} \le m\Delta_1/2 + (T-m)\Delta_1 e^{-m\Delta_1^2/8}$$
(4)

Further, using $m = 8 \log(T) / \Delta_1^2$ (to bring the regret bound in terms of T and eliminate m), we get a logarithmic regret, i.e.,

$$R_{ETC} \le \frac{4}{\Delta_1} \log(T) + \mathcal{O}(1/T).$$
(5)

▲□▶▲□▶▲□▶▲□▶ □ のQで

- ETC is inherently inefficient because, exploitation is during the most plastic phase.
- Do not know how to obtain *m*

Explore-Then-Commit

- Usual method: Explore by playing each arm uniformly for time m and estimate rewards matrix B. Exploit for time T m.
- General analysis is elusive; consider the special case of $b_{11} = b_{22}$ and $b_{12} = b_{21}$.

Theorem

$$R_{[1:T]}^{ETC} \le m\Delta_1/2 + (T-m)\Delta_1 e^{-m\Delta_1^2/8}$$
(4)

Further, using $m = 8 \log(T) / \Delta_1^2$ (to bring the regret bound in terms of T and eliminate m), we get a logarithmic regret, i.e.,

$$R_{ETC} \le \frac{4}{\Delta_1} \log(T) + \mathcal{O}(1/T).$$
(5)

▲□▶▲□▶▲□▶▲□▶ □ のQで

• ETC is inherently inefficient because, exploitation is during the most plastic phase.

DM

Explore-Then-Commit

- Usual method: Explore by playing each arm uniformly for time m and estimate rewards matrix B. Exploit for time T m.
- General analysis is elusive; consider the special case of $b_{11} = b_{22}$ and $b_{12} = b_{21}$.

Theorem

$$R_{[1:T]}^{ETC} \le m\Delta_1/2 + (T-m)\Delta_1 e^{-m\Delta_1^2/8}$$
(4)

Further, using $m = 8 \log(T) / \Delta_1^2$ (to bring the regret bound in terms of T and eliminate m), we get a logarithmic regret, i.e.,

$$R_{ETC} \le \frac{4}{\Delta_1} \log(T) + \mathcal{O}(1/T).$$
(5)

▲□▶▲□▶▲□▶▲□▶ □ のQで

- ETC is inherently inefficient because, exploitation is during the most plastic phase.
- Do not know how to obtain *m*

Thompson sampling

• Initialize $\alpha_{ij} = 1$, $\beta_{ij} = 1$ for all $i, j \in \{1, 2\}$

Let i type of user

• Sample $b_{ij} \sim Beta(\alpha_{ij}, \beta_{ij})$ for all $i, j \in \{1, 2\}$

) If i == 1 then show arm 1 w.p. $\mathbb{1}_{\{\tilde{b}_{11}+\tilde{b}_{12}-1>0\}}$, else show arm 2

If i == 0 then show arm 1 w.p. $\mathbb{1}_{\{\tilde{b}_{22}+\tilde{b}_{21}-1<0\}}$, else show arm 2

• $j = \text{Arm showed}; R_t = \text{Reward obtained};$

 $a_{ij} = \alpha_{ij} + R_i; \ \beta_{ij} = \beta_{ij} + (1 - R_i).$

< ロ > < 同 > < 回 > < 回 > .

Thompson sampling

• Initialize $\alpha_{ij} = 1$, $\beta_{ij} = 1$ for all $i, j \in \{1, 2\}$

2 At time step t,

- Let *i* type of user
- ② Sample $\tilde{b}_{ij} \sim Beta(\alpha_{ij}, \beta_{ij})$ for all $i, j \in \{1, 2\}$
- So If i == 1 then show arm 1 w.p. $\mathbb{1}_{\{\tilde{b}_{11}+\tilde{b}_{12}-1>0\}}$, else show arm 2
- If i == 0 then show arm 1 w.p. $\mathbb{1}_{\{\tilde{b}_{22}+\tilde{b}_{21}-1<0\}}$, else show arm 2

DM

• j = Arm showed; $R_t =$ Reward obtained;

o
$$\alpha_{ij} = \alpha_{ij} + R_t; \ \beta_{ij} = \beta_{ij} + (1 - R_t).$$

• □ ▶ • • □ ▶ • □ ▶

< ∃ >
Preference Shaping with Unknown B

Thompson sampling

• Initialize $\alpha_{ij} = 1$, $\beta_{ij} = 1$ for all $i, j \in \{1, 2\}$

2 At time step t,

Let i type of user

Sample $\tilde{b}_{ij} \sim Beta(\alpha_{ij}, \beta_{ij})$ for all $i, j \in \{1, 2\}$

- § If i == 1 then show arm 1 w.p. $\mathbb{1}_{\{\tilde{b}_{11}+\tilde{b}_{12}-1>0\}}$, else show arm 2
- If i == 0 then show arm 1 w.p. $\mathbb{1}_{\{\tilde{b}_{22}+\tilde{b}_{21}-1<0\}}$, else show arm 2

DM

• j = Arm showed; $R_t =$ Reward obtained;

o
$$\alpha_{ij} = \alpha_{ij} + R_t; \ \beta_{ij} = \beta_{ij} + (1 - R_t).$$

• □ > < 同 > < 回 > <</p>

< ∃ >

- Initialize $\alpha_{ij} = 1$, $\beta_{ij} = 1$ for all $i, j \in \{1, 2\}$
- **2** At time step t,
 - Let i type of user
 - Sample $\tilde{b}_{ij} \sim Beta(\alpha_{ij}, \beta_{ij})$ for all $i, j \in \{1, 2\}$
 - If i == 1 then show arm 1 w.p. $\mathbb{1}_{\{\tilde{b}_{11}+\tilde{b}_{12}-1>0\}}$, else show arm 2
 - If i == 0 then show arm 1 w.p. $\mathbb{1}_{\{\tilde{b}_{22}+\tilde{b}_{21}-1<0\}}$, else show arm 2

DM

- (i) $j = \text{Arm showed}; R_t = \text{Reward obtained};$
- **(** $\alpha_{ij} = \alpha_{ij} + R_t; \ \beta_{ij} = \beta_{ij} + (1 R_t).$

< ロ > < 同 > < 回 > < 回 > .

- Initialize $\alpha_{ij} = 1$, $\beta_{ij} = 1$ for all $i, j \in \{1, 2\}$
- **2** At time step t,
 - Let i type of user
 - Sample $\tilde{b}_{ij} \sim Beta(\alpha_{ij}, \beta_{ij})$ for all $i, j \in \{1, 2\}$
 - So If i == 1 then show arm 1 w.p. $\mathbb{1}_{\{\tilde{b}_{11}+\tilde{b}_{12}-1>0\}}$, else show arm 2
 - If i == 0 then show arm 1 w.p. $\mathbb{1}_{\{\tilde{b}_{22}+\tilde{b}_{21}-1<0\}}$, else show arm 2

DM

- j = Arm showed; $R_t =$ Reward obtained;
- **(**) $\alpha_{ij} = \alpha_{ij} + R_t; \ \beta_{ij} = \beta_{ij} + (1 R_t).$

I naa

- Initialize $\alpha_{ij} = 1$, $\beta_{ij} = 1$ for all $i, j \in \{1, 2\}$
- **2** At time step t,
 - Let i type of user
 - Sample $\tilde{b}_{ij} \sim Beta(\alpha_{ij}, \beta_{ij})$ for all $i, j \in \{1, 2\}$
 - So If i == 1 then show arm 1 w.p. $\mathbb{1}_{\{\tilde{b}_{11}+\tilde{b}_{12}-1>0\}}$, else show arm 2
 - If i == 0 then show arm 1 w.p. $\mathbb{1}_{\{\tilde{b}_{22}+\tilde{b}_{21}-1<0\}}$, else show arm 2 • $j = \text{Arm showed}; R_t = \text{Reward obtained};$

DM

() $\alpha_{ij} = \alpha_{ij} + R_t; \ \beta_{ij} = \beta_{ij} + (1 - R_t).$

・ロト ・ 同 ト ・ 国 ト ・ 国 ト - -

I naa

- Initialize $\alpha_{ij} = 1$, $\beta_{ij} = 1$ for all $i, j \in \{1, 2\}$
- At time step t,
 - Let *i* type of user
 - Sample $b_{ij} \sim Beta(\alpha_{ij}, \beta_{ij})$ for all $i, j \in \{1, 2\}$
 - If i == 1 then show arm 1 w.p. $\mathbb{1}_{\{\tilde{b}_{11}+\tilde{b}_{12}-1>0\}}$, else show arm 2
 - If i == 0 then show arm 1 w.p. 1_{b2+b21-1<0}, else show arm 2
 j =Arm showed; R_t = Reward obtained;

DM

- **6** $\alpha_{ii} = \alpha_{ii} + R_t; \ \beta_{ii} = \beta_{ii} + (1 R_t).$

- Initialize $\alpha_{ij} = 1$, $\beta_{ij} = 1$ for all $i, j \in \{1, 2\}$
- At time step t,
 - Let *i* type of user
 - Sample $b_{ij} \sim Beta(\alpha_{ij}, \beta_{ij})$ for all $i, j \in \{1, 2\}$
 - If i == 1 then show arm 1 w.p. $\mathbb{1}_{\{\tilde{b}_{11}+\tilde{b}_{12}-1>0\}}$, else show arm 2
 - If i == 0 then show arm 1 w.p. 1_{b2+b21-1<0}, else show arm 2
 j =Arm showed; R_t = Reward obtained;

DM

- **6** $\alpha_{ii} = \alpha_{ii} + R_t; \ \beta_{ii} = \beta_{ii} + (1 R_t).$

・ロト ・ 同 ト ・ 国 ト ・ 国 ト - -

I naa

Theorem

Cumulative regret for the Thompson sampling policy is bounded above by

$$R_{[1:T]}^{Thomp} \le \frac{(z^*)^2}{4} \left(\frac{1}{f_1(1-f_1)\Delta_1} + \frac{1}{f_2(1-f_2)\Delta_2} \right) \log(T).$$
(6)

 z^* is asymptotic proportion from optimal policy; $f_1, f_2 < 1$ are constants

Expected population proportion vs time (left) and cumulative regret vs time (right) for the ETC, TS, and the optimal policy that knows *B*. $B_1 = (b_{11} = 0.9, b_{12} = 0.4, b_{21} = 0.2, b_{22} = 0.6)$. Optimal policy is (p = 1, q = 1).

DM

Expected population proportion vs time (left) and cumulative regret vs time (right) for the ETC, TS, and the optimal policy that knows *B*. $B_2 = (b_{11} = 0.9, b_{12} = 0.4, b_{21} = 0.6, b_{22} = 0.7)$. Optimal policy is (p = 1, q = 0).

DM

Expected population proportion vs time (left) and cumulative regret vs time (right) for the ETC, TS, and the optimal policy that knows *B*. $B_3 = (b_{11} = 0.7, b_{12} = 0.1, b_{21} = 0.3, b_{22} = 0.5)$. Optimal policy is (p = 0, q = 1).

DM

Expected population proportion vs time (left) and cumulative regret vs time (right) for the ETC, TS, and the optimal policy that knows *B*. $B_4 = (b_{11} = 0.7, b_{12} = 0.1, b_{21} = 0.6, b_{22} = 0.6)$. Optimal policy is (p = 0, q = 0).

DM

Expected population proportion vs time (left) and cumulative regret vs time (right) for the ETC, TS, and the optimal for $B_{sym} = (b_{11} = 0.9, b_{12} = 0.7, b_{21} = 0.7, b_{22} = 0.9)$

Constant Influence Dynamics Model

Recall that there is a difference in the population evolution: Ball of color *i* flips if type *i* gets reward when shown arm A_{-i} OR if it gets reward 0 when shown arm A_i.

Lemma

For a policy π such that $(p_t, q_t) = (p, q)$,

$$z_1(t) = \frac{d_2}{d_1 + d_2} + \left(z_1^0 - \frac{d_2}{d_1 + d_2}\right)e^{-t\frac{d_1 + d_2}{N_0}}$$

Here $d_1 = p(1 - b_{11}) + (1 - p)b_{12}$, $d_2 = q(1 - b_{22}) + (1 - q)b_{21}$ and $z_1(0)$ is the initial proportion of type 1 users.

• With a fixed (p,q), the asymptotic fraction is the same as in the Decreasing Influence model; but rate is not the same.

DM

• For $b_{11} = b_{22}$ and $b_{12} = b_{21}$, all the results from the DID model hold with no change. Rather surprising because the two-fold tradeoff of DID does not seem to have caused it additional damage!

Recall that there is a difference in the population evolution: Ball of color *i* flips if type *i* gets reward when shown arm A_{-i} OR if it gets reward 0 when shown arm A_i.

Lemma

For a policy π such that $(p_t, q_t) = (p, q)$,

$$z_1(t) = \frac{d_2}{d_1 + d_2} + \left(z_1^0 - \frac{d_2}{d_1 + d_2}\right)e^{-t\frac{d_1 + d_2}{N_0}}$$

Here $d_1 = p(1 - b_{11}) + (1 - p)b_{12}$, $d_2 = q(1 - b_{22}) + (1 - q)b_{21}$ and $z_1(0)$ is the initial proportion of type 1 users.

• With a fixed (p, q), the asymptotic fraction is the same as in the Decreasing Influence model; but rate is not the same.

DM

• For $b_{11} = b_{22}$ and $b_{12} = b_{21}$, all the results from the DID model hold with no change. Rather surprising because the two-fold tradeoff of DID does not seem to have caused it additional damage!

▲□▶▲□▶▲□▶▲□▶ □ のQで

Recall that there is a difference in the population evolution: Ball of color *i* flips if type *i* gets reward when shown arm A_{-i} OR if it gets reward 0 when shown arm A_i.

Lemma

For a policy π such that $(p_t, q_t) = (p, q)$,

$$z_1(t) = \frac{d_2}{d_1 + d_2} + \left(z_1^0 - \frac{d_2}{d_1 + d_2}\right) e^{-t\frac{d_1 + d_2}{N_0}}$$

Here $d_1 = p(1 - b_{11}) + (1 - p)b_{12}$, $d_2 = q(1 - b_{22}) + (1 - q)b_{21}$ and $z_1(0)$ is the initial proportion of type 1 users.

• With a fixed (p, q), the asymptotic fraction is the same as in the Decreasing Influence model; but rate is not the same.

DM

• For $b_{11} = b_{22}$ and $b_{12} = b_{21}$, all the results from the DID model hold with no change. Rather surprising because the two-fold tradeoff of DID does not seem to have caused it additional damage!

▲□▶▲□▶▲□▶▲□▶ □ のQで

Recall that there is a difference in the population evolution: Ball of color *i* flips if type *i* gets reward when shown arm A_{-i} OR if it gets reward 0 when shown arm A_i.

Lemma

For a policy π such that $(p_t, q_t) = (p, q)$,

$$z_1(t) = \frac{d_2}{d_1 + d_2} + \left(z_1^0 - \frac{d_2}{d_1 + d_2}\right) e^{-t\frac{d_1 + d_2}{N_0}}$$

Here $d_1 = p(1 - b_{11}) + (1 - p)b_{12}$, $d_2 = q(1 - b_{22}) + (1 - q)b_{21}$ and $z_1(0)$ is the initial proportion of type 1 users.

• With a fixed (p, q), the asymptotic fraction is the same as in the Decreasing Influence model; but rate is not the same.

DM

• For $b_{11} = b_{22}$ and $b_{12} = b_{21}$, all the results from the DID model hold with no change. Rather surprising because the two-fold tradeoff of DID does not seem to have caused it additional damage!

Recall that there is a difference in the population evolution: Ball of color *i* flips if type *i* gets reward when shown arm A_{-i} OR if it gets reward 0 when shown arm A_i.

Lemma

For a policy π such that $(p_t, q_t) = (p, q)$,

$$z_1(t) = \frac{d_2}{d_1 + d_2} + \left(z_1^0 - \frac{d_2}{d_1 + d_2}\right) e^{-t\frac{d_1 + d_2}{N_0}}$$

Here $d_1 = p(1 - b_{11}) + (1 - p)b_{12}$, $d_2 = q(1 - b_{22}) + (1 - q)b_{21}$ and $z_1(0)$ is the initial proportion of type 1 users.

• With a fixed (p, q), the asymptotic fraction is the same as in the Decreasing Influence model; but rate is not the same.

DM

• For $b_{11} = b_{22}$ and $b_{12} = b_{21}$, all the results from the DID model hold with no change. Rather surprising because the two-fold tradeoff of DID does not seem to have caused it additional damage!

Recall that there is a difference in the population evolution: Ball of color *i* flips if type *i* gets reward when shown arm A_{-i} OR if it gets reward 0 when shown arm A_i.

Lemma

For a policy π such that $(p_t, q_t) = (p, q)$,

$$z_1(t) = \frac{d_2}{d_1 + d_2} + \left(z_1^0 - \frac{d_2}{d_1 + d_2}\right) e^{-t\frac{d_1 + d_2}{N_0}}$$

Here $d_1 = p(1 - b_{11}) + (1 - p)b_{12}$, $d_2 = q(1 - b_{22}) + (1 - q)b_{21}$ and $z_1(0)$ is the initial proportion of type 1 users.

- With a fixed (p, q), the asymptotic fraction is the same as in the Decreasing Influence model; but rate is not the same.
- For $b_{11} = b_{22}$ and $b_{12} = b_{21}$, all the results from the DID model hold with no change. Rather surprising because the two-fold tradeoff of DID does not seem to have caused it additional damage!

Expected population proportion vs time for optimal policies that knows B. for Model 1 and Model 2.

$$B_1 = (b_{11} = 0.7, b_{12} = 0.1, b_{21} = 0.2, b_{22} = 0.5)$$
. Optimal policy is $(p = 0, q = 0)$.

э

(日)

Expected population proportion vs time for optimal policies that knows B. for Model 1 and Model 2.

$$B_2 = (b_{11} = 0.9, b_{12} = 0.7, b_{21} = 0.7, b_{22} = 0.9)$$
. Optimal policy is $(p = 1, q = 0)$.

• • • • • • • •

3) J

- Generalises to *N* arms and *N* user types. Optimal policies for some natural generalisations can be defined and analysed.
- Can have two competing systems influencing in opposite directions.
 - Here the users also have a choice of the RS that they choose and one needs to define the such a matrix *P*.
 - Equilibrium, not surprisingly, outcome depends on the matrix B (polarised population or a uniform population), and on P.
 - Simulation results show interesting behavour!

• □ ▶ • • □ ▶ • • □ ▶ •

- Generalises to *N* arms and *N* user types. Optimal policies for some natural generalisations can be defined and analysed.
- Can have two competing systems influencing in opposite directions.
 - Here the users also have a choice of the RS that they choose and one needs to define the such a matrix *P*.
 - Equilibrium, not surprisingly, outcome depends on the matrix *B* (polarised population or a uniform population), and on *P*.
 - Simulation results show interesting behavour!

DM

• □ ▶ • • □ ▶ • □ ▶

< ∃ >

- Generalises to *N* arms and *N* user types. Optimal policies for some natural generalisations can be defined and analysed.
- Can have two competing systems influencing in opposite directions.
 - Here the users also have a choice of the RS that they choose and one needs to define the such a matrix *P*.
 - Equilibrium, not surprisingly, outcome depends on the matrix *B* (polarised population or a uniform population), and on *P*.
 - Simulation results show interesting behavour!

DM

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Generalises to *N* arms and *N* user types. Optimal policies for some natural generalisations can be defined and analysed.
- Can have two competing systems influencing in opposite directions.
 - Here the users also have a choice of the RS that they choose and one needs to define the such a matrix *P*.
 - Equilibrium, not surprisingly, outcome depends on the matrix *B* (polarised population or a uniform population), and on *P*.

• Simulation results show interesting behavour!

DM

(日)

- Generalises to *N* arms and *N* user types. Optimal policies for some natural generalisations can be defined and analysed.
- Can have two competing systems influencing in opposite directions.
 - Here the users also have a choice of the RS that they choose and one needs to define the such a matrix *P*.
 - Equilibrium, not surprisingly, outcome depends on the matrix *B* (polarised population or a uniform population), and on *P*.
 - Simulation results show interesting behavour!

DM

- This strand of work is motivated by the belief that algorithms that learn population preferences also influence the prefences, either in a transient or in a permanent manner, perhaps benignly.
- The effect of this influence is not captured well in the models that I am famililar with.
- In other work:
 - Modeled the peer state-of-indust with respect to an arror as a two-state. Markov chain, gives rise to a restless bandit wordel and could determine. Whittle index based policies when the parameters are known;
 - Could also consider a deterministic model for the preference evolutions and design optimal bandit algorithms
- **Holy grail:** A general model to describe the interaction between the learning algorithm and the *'state of mind* of the population' that the learning does not account for.

DM

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- This strand of work is motivated by the belief that algorithms that learn population preferences also influence the prefences, either in a transient or in a permanent manner, perhaps benignly.
- The effect of this influence is not captured well in the models that I am famililar with.
- In other work:
 - Modeled the peer state-of-indust with respect to an arror as a two-state. Markov chain, gives rise to a restless bandit wordel and could determine. Whittle index based policies when the parameters are known;
 - Could also consider a deterministic model for the preference evolutions and design optimal bandit algorithms
- **Holy grail:** A general model to describe the interaction between the learning algorithm and the *'state of mind* of the population' that the learning does not account for.

DM

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- This strand of work is motivated by the belief that algorithms that learn population preferences also influence the prefences, either in a transient or in a permanent manner, perhaps benignly.
- The effect of this influence is not captured well in the models that I am famililar with.
- In other work:
 - Modeled the new state-of-mind with respect to an arm as a two-state.
 Markov chain, gives rise to a vestless bandit model and could determine whitle index based policies when the parameters are known;
 Could also consider a deterministic model for the preference evolution and desire contrast based is invition.
- **Holy grail:** A general model to describe the interaction between the learning algorithm and the '*state of mind* of the population' that the learning does not account for.

DM

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- This strand of work is motivated by the belief that algorithms that learn population preferences also influence the prefences, either in a transient or in a permanent manner, perhaps benignly.
- The effect of this influence is not captured well in the models that I am famililar with.
- In other work:
 - Modeled the user state-of-mind with respect to an arm as a two-state Markov chain, gives rise to a restless bandit model and could determine Whittle index based policies when the parameters are known;
 - Could also consider a deterministic model for the preference evolutions and design optimal bandit algorithms
- **Holy grail:** A general model to describe the interaction between the learning algorithm and the *'state of mind* of the population' that the learning does not account for.

DM

- This strand of work is motivated by the belief that algorithms that learn population preferences also influence the prefences, either in a transient or in a permanent manner, perhaps benignly.
- The effect of this influence is not captured well in the models that I am famililar with.
- In other work:
 - Modeled the user state-of-mind with respect to an arm as a two-state Markov chain, gives rise to a restless bandit model and could determine Whittle index based policies when the parameters are known;
 - Could also consider a deterministic model for the preference evolution and design optimal bandit algorithms
- **Holy grail:** A general model to describe the interaction between the learning algorithm and the *'state of mind* of the population' that the learning does not account for.

DM

- This strand of work is motivated by the belief that algorithms that learn population preferences also influence the prefences, either in a transient or in a permanent manner, perhaps benignly.
- The effect of this influence is not captured well in the models that I am famililar with.
- In other work:
 - Modeled the user state-of-mind with respect to an arm as a two-state Markov chain. gives rise to a restless bandit model and could determine Whittle index based policies when the parameters are known:
 - Could also consider a deterministic model for the preference evolution and design optimal bandit algorithms
- **Holy grail:** A general model to describe the interaction between the learning algorithm and the *'state of mind* of the population' that the learning does not account for.

DM

- This strand of work is motivated by the belief that algorithms that learn population preferences also influence the prefences, either in a transient or in a permanent manner, perhaps benignly.
- The effect of this influence is not captured well in the models that I am famililar with.
- In other work:
 - Modeled the user state-of-mind with respect to an arm as a two-state Markov chain. gives rise to a restless bandit model and could determine Whittle index based policies when the parameters are known:
 - Could also consider a deterministic model for the preference evolution and design optimal bandit algorithms
- **Holy grail:** A general model to describe the interaction between the learning algorithm and the *'state of mind* of the population' that the learning does not account for.

DM

- This strand of work is motivated by the belief that algorithms that learn population preferences also influence the prefences, either in a transient or in a permanent manner, perhaps benignly.
- The effect of this influence is not captured well in the models that I am famililar with.
- In other work:
 - Modeled the user **state-of-mind** with respect to an arm as a two-state Markov chain. gives rise to a restless bandit model and could determine Whittle index based policies when the parameters are known;
 - Could also consider a deterministic model for the preference evolution and design optimal bandit algorithms
- **Holy grail:** A general model to describe the interaction between the learning algorithm and the '*state of mind* of the population' that the learning does not account for.

DM

- This strand of work is motivated by the belief that algorithms that learn population preferences also influence the prefences, either in a transient or in a permanent manner, perhaps benignly.
- The effect of this influence is not captured well in the models that I am famililar with.
- In other work:
 - Modeled the user **state-of-mind** with respect to an arm as a two-state Markov chain. gives rise to a restless bandit model and could determine Whittle index based policies when the parameters are known;
 - Could also consider a deterministic model for the preference evolution and design optimal bandit algorithms
- Holy grail: A general model to describe the interaction between the learning algorithm and the '*state of mind* of the population' that the learning does not account for.

イロト (語) (語) (語)